
Tropical Journal of the Built Environment (TJOBE) 

Vol. 3  No.  2   December 2022 

98 

Spectral Analysis of Lead Tailings  

in Topsoil 
 

Odumosu Joseph O1,2, Nwadialor Jonathan I1, Alamba, Dauda1  

& Adetunji Oluwatobi O1 

1 Department of Surveying & Geoinformatics, Federal University of Technology, Minna 
2Department of Surveying & Geoinformatics, Federal University Oye Ekiti, Ekiti 

Corresponding Author: odumossu4life@yahoo.com 

 

Abstract 
The adverse effect of high concentration of heavy metals, especially lead (Pb), in topsoil which 

include food scarcity, increase morbidity rate (due to lead poisoning) especially in children in 

the rural areas is alarming and requires an urgent attention. Efforts has been made by many 

researchers to detect lead metals in soil especially in regions where anthropogenic activities 

aggravates the natural occurrence of lead (Pb). Laboratory approach which involves biological 

and chemical analysis is limited; quite expensive, time taking and cannot measure extent of 

spread of this metal in a large area. Advances in geospatial science has brought a huge change 

in environmental studies. Herein, spectral analysis of lead tailings in topsoil was carried out, 

using Minna metropolis as a case study. Three different geospatial approaches of processing 

satellite imageries were employed – a modified Kaufmann’s relation, self-developed 

Normalized Differential Lead Index (NDLI) and Principal Component Analysis to identify 

the extent of lead pollution within this study area. Results from these three techniques 

characterized lead tailings in the study area and comparison of the performance of all three 

techniques reveal that there is high level of consistency in their outputs, thus, the mapped lead 

spread in the study area is quite reliable. Seven (7) lead hotspots with NDLI values ranging 

from 13-15 were detected in the central region of the study area where built-up area is thickest, 

implying that human activities truly induce concentration of lead metal in topsoil. Atomic 

Absorption Spectrometry test carried out on soil samples taken from the identified hotspots 

confirm that the lead concentration in the identified areas is higher than that of other areas. 

The AAS results further confirmed the reliability of the developed NLDI which gives higher 

lead index for areas with high lead concentrates and vice versa.  
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.

 

Introduction 

Lead (Pb) is a highly toxic and heavy metal; 

yet it is regarded as the most important 

element in the environment (Latif et al., 

2013). It is dense (about 5gcm-3), soft, 

malleable and easily extractible. 

Consequently, it has become the best choice 

of most manufacturers. Due to these 

attributes, it has been commonly used for 

centuries (Jackson, 2021). Lead metal 

occurs naturally in the biosphere, however, 

anthropogenic and industrial activities such 

as mining, burning of fossil fuels, smelting, 

among others increase their concentration in 

the environment, hence, induce their 

toxicity. 

 

When the concentration of this heavy metals 

becomes more than the prescribed level, 

life-threatening problems including cancer, 

atherosclerosis, Alzheimer disease, and 

Parkinson disorder, may result, hence, 

posing a lot of danger to human health 

(Muszynska and Hanus-Fajerska, 2015). 

For this reason, rules and regulations in 

highly developed countries like the United 

States now prohibit the use of lead in 

common products such as gasoline and 

paint, yet lead poisoning still remains a 
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threat to human health especially in most 

Africa Countries (Kolawole et al., 2018; 

Ilugbo et al., 2018; Seema et al., 2013; Latif 

et al., 2013).  

 

According to World Health Organization 

(2021), Young children are particularly 

vulnerable to the toxic effects of lead and 

can suffer profound and permanent adverse 

health impacts, particularly on the 

development of the brain and nervous 

system. Children get lead into their bodies 

by putting the lead-containing objects in 

their mouths, this is worst among children 

of the illiterates who are allowed to play 

with contaminated soil (Jacquelyn 2018). 

One of the most common sources of Lead 

contamination in children is from top soils.  

 

The conventional approaches (physical, 

chemical and biological processes) of 

detecting and remediating lead metal in soil 

are quite cumbersome, time taking and 

expensive. Aside this ineffectiveness, these 

approaches which involve series of 

laboratory examination of soil is not capable 

of marking the extent of lead poisoning in 

soil of a geographical location. Physical 

technique is one of the approaches that have 

been employed by various studies for the 

analysis of lead in soil. This approach 

involves various analytical techniques, such 

as X-ray diffraction, toxicity characteristic 

leaching procedure (TCLP), the European 

Community Bureau of Reference (BCR), 

and scanning electron microscopy-energy 

dispersive spectrometry for the detection of 

lead in soil (Yin and Shi, 2014; Dhirendra 

and Ekhlaque, 2021). These authors all 

recommended a swifter and robust approach 

of detecting lead in soil. This is the same for 

studies where chemical and biological 

approaches were employed (Yang et al., 

2018; Sruthi and Jayalekshmi 2014; 

Grobelak and Napora 2015; Azubuike et al., 

2016; Souza et al., 2013; Xie et al., 2018; 

Dhirendra and Ekhlaque 2021).  

 

In order to address the overwhelming 

problem of detecting lead metal 

contamination of soil, this study presents a 

fast, easy and near-real-time monitoring 

approach which involves the spectral 

analysis of soils using remote sensing. The 

study conforms with the works of Zhao et 

al., (2019), who used spectral analysis of 

soil via RS to proffer solutions to 

environmental problems.  

 

Spectral reflectance of lead metal in 

soil 
Soils contaminated by lead metals show 

spectral characteristics that differ from 

uncontaminated soils (Jin et al., 2018). The 

spectral reflectance of Pb contaminated 

soils shows an increasing trend between 500 

and 780nm (equivalent to the spectral range 

of bands 2 to 4 of landsat 8 imagery) and a 

decreasing trend between 780 and 900nm 

(band 5 of landsat 8). The reflectance of 

satellite images showing polluted soils 

exhibits increasing trend in the range 1200-

2500nm (equivalent to the short wavelength 

infrared bands of Landsat 8 imagery – bands 

6 and 7) (Yun et al, 2021). 

 

Previous studies have utilized these 

geospatial understanding for advancing the 

mapping of heavy (lead) metals in soil. Qu 

et al. (2015) exploited hyperspectral 

imagery involving multispectral 

characteristics to estimate the 

concentrations of lead in soil using 

regression analysis. Yang et al. (2016) 

assessed the performance of multiple 

vegetation indices derived from 

hyperspectral imagery to estimate the 

concentration of lead in soils. Wang and 

Gao (2018) summarized some studies 

carried out on the estimation of heavy (lead) 

metal concentrations in soil based on 

different data sources and highlighted the 

challenges and unresolved issues.  

 

Peng et al. (2016) proposed the use of 

Landsat 8 imagery to extract spectral 

indices, in combination with auxiliary data 

like proximity of area of interest to road, 

which were then utilized to establish a 

model for estimating the heavy (lead) metals 

concentration in soils. Also, Liu et al. 

(2018) used Sentinel -2A imagery to 

investigate the areas exerted by lead metal 

in soils on crops. Yun et al. (2021) in order 

to improve the accuracy of mapping heavy 

(lead) metals in soil, integrated Landsat 8 
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imagery with a digital elevation model and 

geochemical data obtained from soil 

samples. The study was carried out over 

China and the findings of the research was 

consistent with the ground survey results for 

the study area.  

 

Based on the understanding of spectral 

reflectance of lead metals in topsoil, this 

study aimed at detecting and mapping lead 

metal tailings in topsoil. Like the previous 

studies lead detection in this study is based 

on the principle of band ratioing; but the 

difference in approach here is that two 

different band rations are combined in order 

to identify the lead contaminated areas. The 

band ratios used were (i) a self-developed 

lead index) and (ii) the Kaufmann’s relation 

using the Landsat 8 OLI images. Thereafter, 

Principal component analysis (PCA) of the 

of the Landsat image was further analyzed 

to further demonstrate the presence of lead 

contamination within the study area. This 

study was exemplified using Minna 

metropolis of Niger State, Nigeria where 

anthropogenic activities are expected to 

have increase the concentration of lead (Pb) 

in topsoil.   

 

Study Area 
This study was exemplified over Minna 

metropolis. Minna Metropolis is the most 

populated part of the capital city of Niger 

State in Nigeria. This geographical location 

(as seen in figure 1) lies between Latitude 

09°25’ 00’’North - 09° 40’ 00’’North and 

Longitude 6° 24’ 20’’East - 6° 36’ 40’’East. 

It occupies an area of about 12200 hectares 

of land (Minna Master Plan, 1979). As 

presented in Figure 1, it is bounded in the 

North by Shiroro Local Government, in the 

East by Muyan Local Government, to the 

West by Bosso Local Government and to 

the South by Paikoro Local Government 

areas. The population of the city is estimated 

at 304,113 (National Population Census 

2006) and there are a lot of industrial 

activities carried out within the area.  

 

 
Figure 1: Study area 
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Methods and Materials 
Materials 
Table 1 and 2 respectively show the list of 

equipment and software used in this 

scientific work and the purpose which each 

of them served. 

 

Methods 
Figure 2 shows the schematic diagram of the 

methods employed in the study. The various 

techniques employed for data acquisition, 

processing and analysis of research results 

are discussed here under. 

 

Satellite images were obtained from 

secondary sources. Landsat 8 OLI satellite 

imagery (path 188, row 054) covering the 

study area with its 9 spectral bands were 

downloaded. The satellite image had a 

horizontal resolution of 30m and was 

acquired from USGS Earth explorer website 

(www.earthexplorer.usgs.gov). Soil 

samples that were used for validation of the 

results were taken from selected locations 

across the study area by collecting samples 

into well labelled cylindrical flasks.  

 

As seen in Figure 2, the Landsat image was 

fist classified in order to determine the 

major land uses within the study area. The 

essence of the classification is to identify a-

priori, areas where human activities are 

likely to increase the natural lead 

concentration of the soil within such areas. 

For this study, the maximum likelihood 

classifier was used alongside the ERDAS 

imagine 14.0 software to classify the study 

area.  

 

As earlier mentioned, two band 

combinations were utilized in this study. 

The first was the Kaufmann’s relation then 

development of a Normalized Differential 

Lead Index (NDLI). Earlier studies have 

shown that the Kaufmann’s relation is 

optimum for determination of hydro-

thermal alteration zones (Aransiola and 

Odumosu, 2021). It is achieved in Landsat 

TM by combining bands 7, 4, 3 and 5 

(Ibrahim et al., 2021). One band is ratioed 

over the other and this is done for three 

combinations, outputs composited as red, 

green and blue bands (RGB). Usually, the 

band ratios used for the Kaufmann ratio 

correspond to clay minerals, silification and 

ferrous mineral formations. These four 

bands (7,4,3 and 5) of Landsat TM are 

respectively equivalent to band 7, 5, 4 and 6 

in Landsat 8. This band ratios and 

compositing have been found effective in 

detecting and mapping minerals, hydro-

thermally altered rocks, meta-sediments and 

geological determination (Sadiya and 

Ozigis, 2015; Ibrahim et al., 2021; 

Krishnendu et al., 2019). The Kaufmann’s 

relation is expressed as (7/5, 5/4 and 6/7) in 

the RGB combination (Mila and Fujimitsu, 

2012). The choice of the Kaufmann’s 

relation for detection of likely lead 

contamination is premised upon the fact that 

Lead could occur as geological meta-

sediments or sediments from unregulated 

rudimentary processing of illegally mined 

lead-rich gold ore, automobile engines or 

other anthropogenic causes (Nabulo et al, 

2012). The spectral ratioing was achieved 

ArcMap software. 

Table 1: Equipment used 

Equipment Purpose 

DELL Personal Computer  For the processing of satellite imageries, 

processing and analysis of the same 

Handheld GPS Receiver 

Etrex 

For locating positions of soil samples mapped to 

be hotspot of contaminated soil 

Cylindrical flask, spatula, among others Used in the AAS laboratory test for soil test 

 

Table 2: Software used 

Software Purpose 

ArcGIS 10.4 Implementation of NDLI, Kaufmann’s relation and PCA 

ERDAS Imagine 14.0 For image classification 

Microsoft office Report writing and numeric data entry 
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Figure 2: Methodology 

 

The self-developed Normalized Differential 

Lead Index (NDLI) was achieved using 

specified colour combinations. Since earlier 

studies have shown that Lead has high 

spectral reflectance in the visible (500 and 

780nm) and shortwave infrared (1200 – 

2500nm), a band ratio of green, red and 

shortwave infrared as shown in equation (1) 

was used for the NDLI. 

𝑁𝐷𝐿𝐼

=
10 𝑥 (𝐵𝑎𝑛𝑑 3+𝐵𝑎𝑛𝑑 4+𝐵𝑎𝑛𝑑 6)

(𝐵𝑎𝑛𝑑 5+𝐵𝑎𝑛𝑑 6)
          (1) 

 

This was implemented using the ‘Raster 

calculator’ of ArcMap. Raster calculator is 

a spatial analyst tool in ArcMap which 

allows raster images (or bands) to be 

mathematically combined. The tool creates 

and implements a map algebra expression 

that will give a raster output. In doing this, 

just like in programming, syntax rules of 

combining the raster datasets using the 

addition, multiplication and division 

operators in the order of equation 1. 

 

The principal component analysis (PCA) 

method is based on the fact that neighboring 

bands of multispectral images are highly 

correlated and often convey almost the same 

information about the object. This method is 

based on multivariate statistical technique 

that selects uncorrelated linear combination 

(eigenvector) of variables in such a way that 

each successively extracted linear 

combination – principal component. 

Equation (2) is an expression of the 

mathematical formulation that implements 

PCA. 

𝑆 =  ∑ ∑ (𝑧𝑖𝑗
𝑗𝑖

−  𝑥𝑖𝑝𝑗)2       (2) 

Where: 𝑧𝑖𝑗  = original data, index 𝑖 stands for the 

variable number and 𝑗 for the observation 

number. 

𝑝𝑗 = the principal component which is used with 

a set of coefficients 𝑥𝑖 to approximate the jth 

observation of the ith variable 𝑧𝑖𝑗  as 𝑥𝑖𝑝𝑗. The 

values of the 𝑥𝑖’s and the 𝑝𝑗 are to be chosen so 

as to minimize the sum of the squared deviations 

between the actual data. 

 

The principal component analysis (PCA) is 

employed in the study in order to reduce the 

dimensionality of the datasets and validate 

the results from the two band rationing 

approaches earlier mentioned. The four 

bands of the Landsat 8 OLI covering the 
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area of interest were analyzed for the 

purpose of deducting the principal 

components, and hence, for detecting 

presence of lead metals across the study 

area. 

 

Upon completion of the three independent 

processes, outputs of each were mapped 

over the area of interest. In order to check 

for the reliability and correlation between 

the techniques, the lead tailings mapped by 

each of them were assessed on the output 

raster bands. Principles of image 

interpretation were employed to detect 

similarities or differences in the output 

raster of the three techniques under study. 

Pattern and shape (two out of the seven 

elements of image interpretation in remote 

sensing) formed the major basis of 

comparison between outputs of the two 

approaches. The spatial distribution of lead 

tailings on each of the raster outputs 

(Kauffman, NDLI and PCA) was vectorized 

using polygon tool in ArcMap; this involved 

tracing of boundary of lead tailings. The 

polygons formed from the vectorized 

boundary of lead tailings were compared 

and a total conformity was noticed.  

 

After identifying the level / extent of Lead 

contamination in the top soil within the 

study area using remote sensing, specific 

areas identified (based on the NDLI map as 

Lead hotspots were physically visited for 

ground truthing. Lead hotspot areas are 

places where the raster cells have NDLI 

values ranging from 13 – 15. Seven of such 

spots were identified on the map and their 

coordinates extracted using ArcMap. Soil 

samples were thereafter taken from these 

seven hotspots and taken to the laboratory 

for Atomic Absorption Spectrometric 

(AAS) test. 

 

Results 
For the purpose of discriminating and 

identifying the various land cover classes 

within the study area, image classification 

was performed as earlier discussed and the 

result shown in Table 3 and figure 3. The 

built-up areas are mostly surrounded by soil 

covers, while the study area is largely 

covered by vegetation. Though lead (Pb) 

metal naturally occurs in the environment, 

its existence becomes hazardous when its 

concentration is attenuated by industrial 

activities around built-up areas. Therefore, 

it is expected that the spread of lead within 

the study area will be more around the built-

up area.  

 

Table 3 shows the distribution of the 

different land cover classes and land uses 

within the study area. Raster count of each 

of the classes was used to compute the 

extent of area (in hectares) covered by each 

of them. The table indicates that the soil 

covers 22.8% of the total area equivalent to 

2780.3 hectares, next to vegetation cover.  

 

Table 3: Analysis on land use land cover classes of the study area 

S/No Land cover/land use Raster count Area (hectares) % Coverage 

1. Built up areas 12616 1135.447 9.3 

2. Soil 30892 2780.298 22.8 

3. Vegetation 87331 7859.840 64.3 

4. Water bodies 4885 439.653 3.6 

 Total 135724 12215.237 100 
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Figure 3: Land use land cover map of Minna metropolis 

 

The Kaufmann’s relation involves 

compositing ratioed bands. Direct 

implementation of the Kaufmann’s relation 

as propounded by Kauffman, showed no 

traces of lead tailings within the study area. 

This can be attributed to the fact that the 

study area does not show any sign of hydro-

thermal alteration hence no underground 

minerals within the study area. However, 

tweaking this relation for each of the pairs 

of bands and changing the combination to 

7+5, 5+4, 7+6, tailings of lead were 

observed as seen in Figures 4(a – c) and 5. 

Addition of bands 7 + 5, 5 + 4 and 7 + 6 

yields spectral wavelengths within the 

SWIR band and slightly beyond it i.e 

1.52𝜇m – 3.89 𝜇m. 

 

Figure 4(a) shows additive bands 7 + 5 that 

is, instead of dividing the digital number 

(DN) of bands 7 by that of band 5, they were 

rather added to enhance the detection of 

lead. Regions with low DN values are the 

very dark spots and those with high values 

are the bright regions. The dark spots are 

distributed around built-up areas, where 

anthropogenic activities probably must have 

attenuated the presence of lead in top soil. 

The map therefore shows that the intensity 

of lead in top soil inversely proportionate 

with the DN values in the additive 

combination of bands 7 and 5. Shining raster 

cells as observed in figure 4 has locations 

corresponding to vegetative areas (when 

compared with figure 4), and are mostly 

noticeable in the northern region of the 

study area, implying that this mathematical 

combination of the two bands can be 

explored for detection of other earth 

conditions within the study area. This 

however is left to further studies that is not 

covered within the scope of this study.  
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Figure 4(a): Landsat 8 bands (7+5) image 

 
Figure 4(b): Landsat 8 bands (5+4) image of 

the study area 

 

 
Figure 4(c): Landsat 8 bands (7+5) image 

 

Figure 4(b) is the output of band 5 and band 

4 combinations. As a modification to 

Kaufmann’s relation (fitly applicable for 

detecting minerals), bands 5 and 4 were 

additively combined to investigate the 

presence of lead tailings in soil. The same 

pattern of distribution of low DN values 

observable as dark raster cells seen in figure 

4(a) is also seen in figure 4(b). This implies 

that these two relations involving additive 

combinations of spectral bands enhance the 

presence of lead metal in the soil. However, 

contrary to figure 4(a), the shinning regions 

of figure 4(b) (reflecting very high DN 

values from the bands combination) are few 

and are noticed in the southern region of the 

study area.   

 

Figure 4(c) is also an additive bands 

combination of bands 7 and 6. Output of 
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these relationship has almost the same 

pattern with that of figure 4 (combinations 

of bands 7 and 5); regions with low DN 

values (with locations clustering around the 

built-up areas) in figure 4(c) are the same in 

figure 4(a). Also, regions with high DN 

values indicated by bright tones in the study 

area as seen in figure 4(c) are also 

synonymous with that of figure 4(a). As 

earlier identified, the similarity in these 

results is traceable to the electromagnetic 

characters of band 5, 6 and 7 of Landsat 8 

OLI. Channels 6 and 7 are within the short 

wavelength infrared with wavelength ranges 

1.56-1.66μm and 2.10-2.30μm respectively. 

Suggestively, these bands can be used 

interchangeably to map any Earth objects 

that transmits signal in SWIR. 

 

Figure 5 shows a colour composite of 

figures 4(a) – (c). The map indicated the 

probable top soil regions polluted with high 

concentration of lead metal in dark colour, 

while other features across the study are see 

in other colors. Also, pattern of the dark 

regions suggesting presence of lead in top 

soil clusters around the built-up areas. 

Therefore, attenuated lead concentration in 

soil detected are largely due to 

anthropogenic causes within the study area. 

 

Figure 6 shows the distribution of lead metal 

across the study area based on the developed 

index by this study. The inclusion of a 

multiplicative constant of 10 was to 

exaggerate the raster output of the radio 

bands involved. It is therefore expected as 

seen in the legend of figure 8 that the least 

NDLI values should not be less than 10.  

 

NDLI values across the study area ranges 

from 10-15; larger percentage of the region 

(equivalent to large percentage of 

distribution of vegetation across the study 

area), top soils in the far Northern and 

Southern region of the study area have least 

NDLI value (10-11), implying that lead 

pollution in these regions is the minimum in 

the entire study area. NDLI value ranges 12-

13 (represented in yellow) in figure 8 

corresponds to the detected lead distribution 

in top soil by the modified Kaufmann’s 

relation. This range of values of NDLI (12-

13) indicated in yellow represents region of 

top soil that cluster around the developed or 

built-up area in the study area. This is a 

validation of the tweaked Kaufmann’s 

relations earlier presented and an indication 

that lead metal though occurs naturally on 

the Earth surface, its concentration and 

toxicity is increased by human activities. 

 

 
Figure 5: Colour composite from modified Kaufmann’ relation obtained from Landsat 8 bands 7+5, 5+4, 6+7 in 

RGB sequence 



Spectral Analysis of Lead Tailings in Topsoil,  

Odumosu, et al 

107 

 

 
Figure 6: NDLI map of the study area. 

 

Although not obviously visible, some raster 

cells in figure 6 and 7 have NDLI values 

ranging from 13-15, top soils in these raster 

cells have been regarded as the lead hotspots 

in the study area. In order to pin point top 

soils with high concentration of lead metal 

(where NDLI values ranges between 13 and 

15), a map indicating these spots was 

produced in the ArcMap environment. 

Figure 7 shows the distribution of top soils 

with highest NDLI values – 13-15 (lead 

hotspots). These hotspots are largely (6 out 

of 7) noticed around the central region of the 

study area where built-up land use is most 

significant. These points were thereafter 

visited and soil samples taken for AAS tests 

as a means of validating the study outcomes. 

 

 

 

 
Figure 7: Overlay of lead hotspots on NDLI map of study area (hotspots shown in red) 
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Principal Component Analysis 
Table 4 shows the Eigenvalues of the 

variance-covariance matrix output by the 

PCA of bands 3, 4, 5 and 6 

 

The aim of PCA is to reduce the 

dimensionality of the input rasters to obtain 

only the most useful (one that carries the 

largest amount of information needed) 

principal components. Table 5 shows the 

eigenvalues of the four components (the 

extracted linear combination of the NDLI 

bands) from the PC analysis performed. 

Component 1 (PC1) however carries the 

largest amount of information (about 89%) 

followed by the second component (PC2) 

which carries about 7% of the information 

in the four bands (ratioed or combined). 

Therefore, the last two components (PC3 

and PC4) could be discarded as they both 

merely carry 4% of information from the 

image channels.  

 

This output in table 4 further implies by 

table 5 which shows that PC1 and PC2 are 

the significant bands needed from the input 

layers or bands. Hence, these two 

components have the least amount of 

correlation. Consequently, PC3 and PC4 are 

discarded since they have higher correlation 

values with themselves (see table 5). 

 

Columns of focus for analysis from table 6 

are basically that of PC1 and PC2 since PC3 

and PC4 are to be discarded.  

In the PC2, there is a contrast observable in 

the signs and values of the PC’s coefficients. 

The coefficient of the original 2nd band 

(band 5) had a high negative value (-0.7268) 

while the remaining bands had positive 

values (0.04325-0.54736). A plot of the PC1 

and PC2 coefficients are presented in 

figures 8 (a – b).  

 

In order to explore PC1 and PC2, the 

Eigenevectors of the variance-covariance 

matrix was analyzed as presented in table 6. 

Table 6 shows the Eigenevectors of the 

variance-covariance matrix. 

 

The output raster for PC2 as shown in figure 

8(b) has a direct relationship with 2nd band 

shown in table 6 (with negative value). It is 

deducible that the negative value is an 

indication of water bodies in PC2 (since the 

water body in the southern region of the 

study area is well highlighted on this PC). 

This therefore implies that PC2 is not 

carrying obvious information to detect the 

presence of lead. 

 
Table 4: Eigenevalues of the variance-covariance matrix 

Component Eigenevalues Percentage Accumulative of eigene values 

1 22427.25904   89.4461 89.4461 

2 1679.257007 6.6973 96.1434 

3 939.9883526     3.7489 99.8923 

4 26.9953722 0.1077 100.000 

 
Table 5: Correlation matrix 

 PC1 PC2 PC3 PC4 

PC1 1.00000        0.64669        0.78306 0.97827 

PC2 0.64669 1.00000 0.84483        0.71216 

PC3 0.78306 0.84483 1.00000 0.86340 

PC4 0.97827 0.71216 0.86340 1.00000 

 
Table 6: Eigenevectors of the variance-covariance matrix 

 PC1 PC2 PC3 PC4 

1st Band 0.22050        0.41810        0.40434        0.78299 

2nd Band 0.45391       -0.72368        0.51977       -0.00981 

3rd Band 0.78000        0.04325       -0.61949        0.07715 

4th Band 0.37005        0.54736        0.42729       -0.61715 
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PC1 from table 5, carries the largest amount 

of information in the composite band (about 

89%). The third band (band 6) in table 6 also 

has the highest value (0.78000) other than 

the other bands with values ranging from 

0.2205-0.45391. This interprets that there is 

high likeliness that band 6 of landsat 8 

(SWIR) can be used for mapping the 

presence of lead in soil. For the purpose of 

visualizing this effect, this component has 

been mapped to investigate its tendency of 

depicting the presence of lead across the 

study area (figure 8(a)). 

 

PC1 has very dark region as well as the 

slightly dark, then grey region. The very 

dark obviously are water bodies in the study 

area and can be seen as a linear feature in the 

southern region. The slightly dark areas 

however show the same pattern as the lead 

polluted areas on NDLI map shown in 

figure 6 and 7. This therefore means that 

PC1 is enough to map out the presence of 

lead in soil in our area of interest. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 8(a): Principal component 1 

  

 

 
Figure 8(b): Principal component 2 
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Comparative analysis of the three 

approaches 
Figure 9 shows relatable outputs of the three 

geospatial techniques employed in this 

study for the spectral analysis of lead metal 

in topsoil. Using the NDLI map (in the 

middle) as reference, the yellow-colored 

regions indicating presence of lead also 

exists in the other two maps (indicated in 

black). This implies that the three methods 

are consistent with themselves, and are 

useful for mapping lead tailings in top soils 
 

Table 7 presents the results obtained from 

AAS tests carried out on the seven identified 

hotspot regions and 2 other areas not 

identified as hotspot (used as control). As 

seen, the seven identified hotspots (sample 

ID 1 – 7) had concentrated values higher 

than the expected standard range of lead 

allowable in top soils, while the remaining 2 

samples (sample ID 8 and 9) used as 

controls had values within the normal range.  
 

Also, it was observed that Sample ID’s 4, 5 

and 7 had very large lead concentrates. This 

large lead concentrate in the three samples 

also correspond to the three points with 

NDLI of 14 and 15 in the NDLI map. This 

authenticates the lead index generated and 

confirms that for any given region, the 

higher the lead concentrate, the higher the 

NDLI value. 

 

Furthermore, according to the World Health 

Organization (WHO) standard permissible 

and ideal value for Lead in Top soils as 

0.1mg/L and 0.005mg/L (10ppm and 

0.5ppm) respectively, the computed value 

of Heavy Metal Pollution Index (HPI) as 

computed by equation (3) is given in Table 

8.  

As seen in Table 8, all soil samples except 

samples 8 and 9 are heavily contaminated 

with Lead. This result is further consistent 

with the developed NLDI and validates the 

NDLI developed in this study. 
 

 

 
Figure 9: Comparison of the three methods 

 

 
Table 7: Summary of AAS test result for 9 sample points 

Sample ID Analyte  Concentration (ppm) standard value Remarks 

1 Pb 207.11 1 - 30 High 

2 Pb 227.56 1 - 30 High 

3 Pb 346.51 1 - 30 High 

4 Pb 457.68 1 - 30 High 

5 Pb 611.42 1 - 30 High 

6 Pb 117.85 1 - 30 High 

7 Pb 876.18 1 - 30 Very High 

8 Pb 4.658 1 - 30 Normal 

9 Pb 1.995 1 - 30 Normal 
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Table 8: HPI values for each sample 

Sample ID  Concentration (ppm) HPI value Remarks 

1 207.11 217.48 Contaminated 

2 227.56 239.01 Contaminated 

3 346.51 364.17 Contaminated 

4 457.68 481.24 Contaminated 

5 611.42 643.07 Contaminated 

6 117.85 123.53 Contaminated 

7 876.18 921.77 Contaminated 

8 4.658 4.38 Not contaminated 

9 1.995 1.57 Not contaminated 

 

 

Conclusion 
Three remote sensing (geospatial) 

techniques for investigating the spectral 

characteristics of lead tailings in top soils 

have been presented in this study using 

Minna metropolis as the study area. Using 

different Landsat 8 bands ratios and 

combinations, the study discovered a 

modified Kaufmann’s relations, self-

developed NDLI and PCA-based approach 

that are capable of characterizing the lead 

concentration level in the regions within the 

study area where topsoil is polluted by lead 

metals. Having established that lead metals 

exist across top soil in the study area at 

different concentrations, it is observed that 

the resultant results from the techniques had 

a near-zero standard deviation; which serves 

as validation of the effectiveness of 

geospatial techniques at mapping lead 

metals in top soil. Furthermore, the results 

obtained from the geospatial analysis via 

remote sensing were consistent with AAS 

test results and the computed HPI values; 

thus, validating the reliability of the 

presented methods for detecting and 

mapping lead contamination in top soils. 
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